MG26018 Simulation Modeling and Analysis 仿真建模与分析

Lecture 8: Output Analysis II: Comparison and Optimization

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

- shenhaihui.github.io/teaching/mg26018
- shenhaihui@sjtu.edu.cn

Fall 2019

董浩云航运与物流研究院 CYTUNG Institute of Maritime and Logistics 中美物流研究院

Contents

- 1 Introduction
- 2 Comparison of Two Designs
 - ► Significant Difference
 - ► Independent Sampling
 - ► Common Random Numbers
- 3 Comparison of Multiple Designs
 - ► Bechhofer's Procedure
 - ▶ Paulson's Procedure
 - ▶ Usage in Softwares

Introduction

- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.
- Here, different simulation models may refer to different designs, operation policies, etc., of a simulated system; in this lecture we simply call them different (system) designs.
- It is one of the most important uses of simulation.

Introduction

- Key Question: Are the observed differences due to
 - the actual differences on the expected performance of system designs?
 - or the random errors in the simulation outputs?
- The comparison can be classified into two types:
 - Two system designs: using confidence interval of the difference.
 - Multiple (more than two) system designs: selection of the best.

- Let θ_1 and θ_2 be the mean performance of the two system designs in simulation.
- To compare θ_1 and θ_2 , we simply construct the point and interval estimates of $\theta_1-\theta_2$
- Suppose we have the simulation output data from simulation of two system designs.[†]

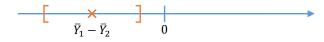
	Replication				Sample	Sample
System	1	2		R_i	Mean	Variance
1	Y ₁₁	Y ₂₁		$Y_{R_1 1}$	\bar{Y}_1	S_1^2
2	Y_{12}	Y_{22}		Y_{R_22}	\bar{Y}_2	$S_2^{\tilde{2}}$

- Point estimator of $\theta_1 \theta_2$: $\bar{Y}_1 \bar{Y}_2$.
- Approximate 1α CI: $\bar{Y}_1 \bar{Y}_2 \pm t_{v,1-\alpha/2} \times \text{s.e.}(\bar{Y}_1 \bar{Y}_2)$.
 - s.e. $(\bar{Y}_1-\bar{Y}_2)$ is the estimator of standard error of $\bar{Y}_1-\bar{Y}_2$; see more details about this quantity and v later.

Fall 2019

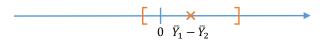
[†]The notation here is different from that in Lec 6; one index here indicates different system designs.

• Case 1 – Strong evidence that $\theta_1 < \theta_2$:



• Case 2 – Strong evidence that $\theta_1 > \theta_2$:

• Case 3 – No strong evidence that one is larger than the other:



• It does not imply $\theta_1 = \theta_2!$

- The first two cases are conclusive.
- If in case 3, then we increase the number of replications R_1 and/or R_2 , after which the CI would likely shift, and definitely shrink in length.
- We will shrink the CI until case 1 or 2 is achieved, or the confidence interval is so narrow, which suggests that we do not need to separate them.

- For the comparison of performance of two designs, there is an important distinction between
 - statistically significant difference (统计意义上的显著区别);
 - practically significant difference (实际意义上的显著区别).
- Statistical significance answers the following questions:
 - Is the observed difference $\bar{Y}_1 \bar{Y}_2$ larger than its variability?
 - Have we collected enough data to be confident that the observed difference is real (not just by chance)?
- Practical significance answers the following question:
 - Is the true difference $|\theta_1-\theta_2|$ large enough so it is worthwhile to separate them?

- Cases 1 and 2 imply a statistically significant difference, while case 3 does not.
- In case 1, we may reach the conclusion that $\theta_1 < \theta_2$ and decide that design 2 is better (suppose larger is better).
- However, if the actual difference $|\theta_1 \theta_2|$ is very small, then it might not be worth the cost to replace design 1 with design 2.
- Confidence intervals do not answer the question of practical significance directly.
 - Instead, they bound, with probability $1-\alpha$, the true difference $\theta_1-\theta_2$ within the range $\bar{Y}_1-\bar{Y}_2\pm t_{v,1-\alpha/2}\times \mathrm{s.e.}(\bar{Y}_1-\bar{Y}_2)$.
 - Whether a difference within these bounds is practically significant depends on the particular problem.

- Independent Sampling
- Independent sampling means that different random number streams are used to simulate the two systems.
 - All the observations of system 1 $\{Y_{r1}: r=1,\ldots,R_1\}$ are statistically independent of all the observations of system 2 $\{Y_{r2}: r=1,\ldots,R_2\}$.
- Suppose ${\rm Var}(Y_{r1})=\sigma_1^2$ and ${\rm Var}(Y_{r2})=\sigma_2^2$. Due to the independence,

$$\operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\bar{Y}_1) + \operatorname{Var}(\bar{Y}_2) = \frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}.$$

- Standard error of $\bar{Y}_1 \bar{Y}_2$ is $\sqrt{\frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}}$.
- σ_i^2 is estimated via sample variance

$$S_i^2 = \frac{1}{R_i - 1} \sum_{r=1}^{R_i} (Y_{ri} - \bar{Y}_i)^2.$$

• Standard error of $ar{Y}_1 - ar{Y}_2$ is estimated via

s.e.
$$(\bar{Y}_1 - \bar{Y}_2) = \sqrt{\frac{S_1^2}{R_1} + \frac{S_2^2}{R_2}}$$
.

• The $1 - \alpha$ CI is approximated by

$$\bar{Y}_1 - \bar{Y}_2 \pm t_{v,1-\alpha/2} \times \text{s.e.}(\bar{Y}_1 - \bar{Y}_2).$$
 (2)

where s.e. $(\bar{Y}_1 - \bar{Y}_2)$ is given in (1), and the degree of freedom v is

$$v = \frac{[S_1^2/R_1 + S_2^2/R_2]^2}{[S_1^2/R_1]^2/(R_1 - 1) + [S_2^2/R_2]^2/(R_2 - 1)}.$$

- The approximated CI (2) is called the Welch confidence interval (Welch 1938).
 - Sometimes, people will round v to integer for convenience.

- If $R_1=R_2=R$, or we are willing to discard some observations from the system design on which we actually have more data, we can pair Y_{r1} with Y_{r2} to define $Z_r=Y_{r1}-Y_{r2}$, for $r=1,\ldots,R$.
- Point estimator of $\theta_1 \theta_2$: $\bar{Z} = \frac{1}{R} \sum_{r=1}^R Z_r = \bar{Y}_1 \bar{Y}_2$.

$$\operatorname{Var}(\bar{Z}) = \frac{\operatorname{Var}(Z_r)}{R} = \frac{\operatorname{Var}(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2}{R}$$
$$= \operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\bar{Y}_1) + \operatorname{Var}(\bar{Y}_2) = \frac{\sigma_1^2 + \sigma_2^2}{R}.$$
 (3)

• To estimate $Var(Z_r)$, instead of estimating σ_1^2 and σ_2^2 separately, we can directly use

$$S^{2} = \frac{1}{R-1} \sum_{r=1}^{R} (Z_{r} - \bar{Z})^{2}.$$
 (4)

• Approximate $1 - \alpha$ CI:

$$\bar{Z} \pm t_{R-1,1-\alpha/2} \frac{S}{\sqrt{R}}.$$

- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
 - For each replication r, the two estimates, Y_{r1} and Y_{r2} , are correlated.
 - In this case, R_1 and R_2 must be equal, say, $R_1 = R_2 = R$.
- The purpose of using CRN is to induce a positive correlation between Y_{r1} and Y_{r2} for each r and thus to achieve a variance reduction in the point estimator of $\theta_1 \theta_2$, \bar{Z} .

$$Var(\bar{Z}) = \frac{Var(Y_{r1} - Y_{r2})}{R} = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2}{R}.$$
 (6)

- $\mathrm{Var}(\bar{Z})$ in (6) is smaller than that in (3) \Rightarrow higher precision of point estimator.
- CI is still computed via (4) and (5), but the width will be smaller ⇒ higher precision.

- It is never enough to simply use the same seed for the random-number generator(s):
 - The random numbers must be synchronized: each random number used in one model for some purpose should be used for the same purpose in the other model.
 - E.g., if the *i*th random number is used to generate a service time at work station 2 for the 5th arrival in model 1, the *i*th random number should be used for the very same purpose in model 2.
- The CRN idea is also used when we validate simulation model via input-output transformation, where we prefer to compare the model and actual system under the same historical input, rather than generate the input from input model.

Comparison of Multiple Designs

- Suppose there are k > 2 system designs in total.
- The interested mean performance of design i is θ_i (unknown).
- Some possible goals:
 - **1** Estimation of each parameter θ_i .
 - 2 Comparison of each θ_i to a control, say, θ_1 (θ_1 can represent the mean performance of an existing system).
 - 3 All pairwise comparisons.
 - **4** Selection of the best θ_i (largest or smallest).
- The first three can be achieved by simultaneous construction of confidence intervals, whereas the last by some selection approaches.
- From now on, without loss of generality, let's assume the best θ_i is the largest one.

- Assumption 1: For each design i with mean performance θ_i , the noisy output $Y_{ri} \sim \mathcal{N}(\theta_i, \sigma_i^2)$, for $r = 1, 2, \ldots$
- Assumption 2: No CRN is used, i.e., Y_{ri} is independent of Y_{rj} for $i \neq j$.
- Assumption 3 (indifference-zone): The gap between the largest θ_i and the second largest θ_i is at least δ , a value known to us.
- Assumption 4 (known variance): σ_i^2 is known, for $i=1,\ldots,k$.
- Bechhofer (1954) first developed a selection procedure, which can ensure the probability of correct selection (PCS):

$$\mathbb{P}\{\text{select the largest } \theta_i\} \ge 1 - \alpha, \tag{7}$$

under Assumptions 1-4, where α is a user specified value and $1-\alpha>1/k.$

- Bechhofer's Procedure
 - lacktriangle Calculate a constant h, which satisfies

$$\mathbb{P}\{Z_i \le h, \ i = 1, 2, \dots, k - 1\} = 1 - \alpha, \tag{8}$$

where $(Z_1, Z_2, \dots, Z_{k-1})^{\mathsf{T}}$ has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2.

2 For i = 1, ..., k, let

$$n_i = \left\lceil \frac{2h^2 \sigma_i^2}{\delta^2} \right\rceil. \tag{9}$$

3 For i = 1, ..., k, run n_i replications for design i and calculate

$$\bar{Y}_i = \frac{1}{n_i} \sum_{r=1}^{n_i} Y_{ri}.$$

4 Select the design with the largest sample mean \bar{Y}_i as the best.

Proof.

Without loss of generality, assume $\theta_k \geq \theta_{k-1} \geq \cdots \geq \theta_1$. Then Assumption 3 says, $\theta_k - \theta_{k-1} \geq \delta$, which implies that

$$\theta_k - \theta_i \ge \delta, \ i = 1, \dots, k - 1. \tag{10}$$

$$\mathbb{P}\{\text{select } k\} = \mathbb{P}\{\bar{Y}_i - \bar{Y}_k < 0, \ i = 1, \dots, k - 1\} \\
= \mathbb{P}\left\{\frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}} < \frac{-(\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, \ i = 1, \dots, k - 1\right\} \\
= \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, \ i = 1, \dots, k - 1\right\} \\
\geq \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\sqrt{\sigma_k^2/\left(\frac{2h^2\sigma_k^2}{\delta^2}\right) + \sigma_i^2/\left(\frac{2h^2\sigma_i^2}{\delta^2}\right)}}, \ i = 1, \dots, k - 1\right\} \quad \text{(due to (9))} \\
= \mathbb{P}\left\{Z_i < \frac{\theta_k - \theta_i}{\delta/h}, \ i = 1, \dots, k - 1\right\} \\
\geq \mathbb{P}\left\{Z_i < h, \ i = 1, \dots, k - 1\right\}. \quad \text{(due to (10))}$$

Proof. (Cont'd)

Now we only need to check that $\mathbf{Z} = (Z_1, Z_2, \dots, Z_{k-1})^\mathsf{T}$ indeed has a multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2.

Recall that

$$Z_i = \frac{\bar{Y}_i - \bar{Y}_k - (\theta_i - \theta_k)}{\sqrt{\sigma_k^2/n_k + \sigma_i^2/n_i}}, \ i = 1, \dots, k - 1,$$

and $\boldsymbol{Y}=(\bar{Y}_1,\bar{Y}_2,\ldots,\bar{Y}_k)^{\mathsf{T}}$ is a k-variate normal random vector. So, \boldsymbol{Z} , as a linear combination of \boldsymbol{Y} , must be a (k-1)-variate normal random vector.

Besides,
$$\operatorname{Var}(Z_i) = \frac{\operatorname{Var}(\bar{Y}_i - \bar{Y}_k)}{\sigma_k^2/n_k + \sigma_i^2/n_i} = \frac{\sigma_k^2/n_k + \sigma_i^2/n_i}{\sigma_k^2/n_k + \sigma_i^2/n_i} = 1.$$

Moreover, since $n_i = \left\lceil \frac{2h^2\sigma_i^2}{\delta^2} \right\rceil$ in (9), $\frac{\sigma_i^2}{n_i} = \frac{\delta^2}{2h^2}$ approximately, $i=1,\ldots,k$.

For
$$i \neq j$$
, $\operatorname{Cov}(Z_i, Z_j) = \operatorname{Cov}\left(\frac{\bar{Y}_i - \bar{Y}_k}{\delta/h}, \frac{\bar{Y}_j - \bar{Y}_k}{\delta/h}\right) = \frac{\operatorname{Cov}(\bar{Y}_k, \bar{Y}_k)}{\delta^2/h^2} = \frac{\sigma_k^2/n_k}{\delta^2/h^2} = \frac{1}{2}$.

Hence, by (8) and (11), $\mathbb{P}\{\text{select } k\} \geq 1 - \alpha$.

• Assumption 3 (indifference-zone) can be **relaxed** by *softening* the selection target:

$$\mathbb{P}\left\{\left|\mathsf{selected}\ \theta_i - \max_{1 \le i \le k} \theta_i\right| < \delta\right\} \ge 1 - \alpha.$$

- Rinott (1978) proposed a procedure which can still guarantee the PCS in (7) while relaxing Assumption 4 (*known* variance), i.e., allowing *unknown* variances.
 - It requires an initial stage to estimate σ_i^2 by sample variance.
 - The proof is more complicated.
- Procedures like Bechhofer's or Rinott's are simple to implement, but the efficiency may be low.
 - The designed sample size (or, replication number), n_i , may be larger than necessary (too conservative).

- More sample efficient procedures should be in a sequential manner.
 - Take observations sequentially, i.e., one at a time.
 - Eliminate designs from continued sampling when it is statistically clear that they are inferior.
 - Simulation for a problem with a single dominant alternative may terminate very quickly.
- Paulson (1964) proposed fully sequential procedures, which can guarantee the PCS in (7), under Assumptions 1-3 and (a) common known variance or (b) common unknown variance.
- Kim and Nelson (2001) proposed a fully sequential procedure \mathcal{KN} , which extends Paulson's procedure, by allowing *unequal* variances and CRN.

Comparison of Multiple Designs

- Suppose $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2$ and σ^2 is known (common known variance).
- Let $\bar{Y}_i(r)$ be the sample mean of the first r observations.
- Paulson's Procedure
 - **1** Let $0 < \lambda < \delta$ (a good choice is $\lambda = \delta/2$), and

$$a = \ln\left(\frac{k-1}{\alpha}\right) \frac{\sigma^2}{\delta - \lambda}.$$

Let $I = \{1, 2, \dots, k\}$ and r = 0.

- **2** Let $r \leftarrow r + 1$. Take one observation from each alternative in I and compute $\bar{Y}_i(r)$, $\forall i \in I$.
- $oxed{3}$ Let $I^{\mathrm{old}}=I$ and

$$I = \left\{ \ell \in I^{\text{old}} : \bar{Y}_{\ell}(r) \geq \max_{i \in I^{\text{old}}} \bar{Y}_{i}(r) - \max\{0, a/r - \lambda\} \right\}.$$

If $\left|I\right|>1$, then go to Step 2; otherwise, select the alternative left in I as the best.

- In Arena, as well as some other simulation softwares like AnyLogic and ProModel, the OptQuest optimization engine is integrated for selecting the best design.
 - OptQuest is based on a combination of methods, including scatter search, tabu search, linear/integer programming, etc.
- Another simulation software, Simio, implements the \mathcal{KN} procedure of Kim and Nelson (2001) as an Add-In, to help user to select the best scenario.

